skip to main content


Search for: All records

Creators/Authors contains: "Zhu, Zhaowei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 4, 2024
  2. Designing robust loss functions is popular in learning with noisy labels while existing designs did not explicitly consider the overfitting property of deep neural networks (DNNs). As a result, applying these losses may still suffer from overfitting/memorizing noisy labels as training proceeds. In this paper, we first theoretically analyze the memorization effect and show that a lower-capacity model may perform better on noisy datasets. However, it is non-trivial to design a neural network with the best capacity given an arbitrary task. To circumvent this dilemma, instead of changing the model architecture, we decouple DNNs into an encoder followed by a linear classifier and propose to restrict the function space of a DNN by a representation regularizer. Particularly, we require the distance between two self-supervised features to be positively related to the distance between the corresponding two supervised model outputs. Our proposed framework is easily extendable and can incorporate many other robust loss functions to further improve performance. Extensive experiments and theoretical analyses support our claims. Code is available at https://github.com/UCSC-REAL/SelfSup_NoisyLabel. 
    more » « less
  3. Label noise in real-world datasets encodes wrong correlation patterns and impairs the generalization of deep neural networks (DNNs). It is critical to find efficient ways to detect corrupted patterns. Current methods primarily focus on designing robust training techniques to prevent DNNs from memorizing corrupted patterns. These approaches often require customized training processes and may overfit corrupted patterns, leading to a performance drop in detection. In this paper, from a more data-centric perspective, we propose a training-free solution to detect corrupted labels. Intuitively, ``closer'' instances are more likely to share the same clean label. Based on the neighborhood information, we propose two methods: the first one uses ``local voting" via checking the noisy label consensuses of nearby features. The second one is a ranking-based approach that scores each instance and filters out a guaranteed number of instances that are likely to be corrupted. We theoretically analyze how the quality of features affects the local voting and provide guidelines for tuning neighborhood size. We also prove the worst-case error bound for the ranking-based method. Experiments with both synthetic and real-world label noise demonstrate our training-free solutions consistently and significantly improve most of the training-based baselines. 
    more » « less
  4. The label noise transition matrix, denoting the transition probabilities from clean labels to noisy labels, is crucial for designing statistically robust solutions. Existing estimators for noise transition matrices, e.g., using either anchor points or clusterability, focus on computer vision tasks that are relatively easier to obtain high-quality representations. We observe that tasks with lower-quality features fail to meet the anchor-point or clusterability condition, due to the coexistence of both uninformative and informative representations. To handle this issue, we propose a generic and practical information-theoretic approach to down-weight the less informative parts of the lower-quality features. This improvement is crucial to identifying and estimating the label noise transition matrix. The salient technical challenge is to compute the relevant information-theoretical metrics using only noisy labels instead of clean ones. We prove that the celebrated f-mutual information measure can often preserve the order when calculated using noisy labels. We then build our transition matrix estimator using this distilled version of features. The necessity and effectiveness of the proposed method are also demonstrated by evaluating the estimation error on a varied set of tabular data and text classification tasks with lower-quality features. 
    more » « less
  5. Semi-supervised learning (SSL) has demonstrated its potential to improve the model accuracy for a variety of learning tasks when the high-quality supervised data is severely limited. Although it is often established that the average accuracy for the entire population of data is improved, it is unclear how SSL fares with different sub-populations. Understanding the above question has substantial fairness implications when different sub-populations are defined by the demographic groups that we aim to treat fairly. In this paper, we reveal the disparate impacts of deploying SSL: the sub-population who has a higher baseline accuracy without using SSL (the "rich" one) tends to benefit more from SSL; while the sub-population who suffers from a low baseline accuracy (the "poor" one) might even observe a performance drop after adding the SSL module. We theoretically and empirically establish the above observation for a broad family of SSL algorithms, which either explicitly or implicitly use an auxiliary "pseudo-label". Experiments on a set of image and text classification tasks confirm our claims. We introduce a new metric, Benefit Ratio, and promote the evaluation of the fairness of SSL (Equalized Benefit Ratio). We further discuss how the disparate impact can be mitigated. We hope our paper will alarm the potential pitfall of using SSL and encourage a multifaceted evaluation of future SSL algorithms. 
    more » « less
  6. Existing research on learning with noisy labels mainly focuses on synthetic label noise. Synthetic label noise, though has clean structures which greatly enable statistical analyses, often fails to model the real-world noise patterns. The recent literature has observed several efforts to offer real-world noisy datasets, e.g., Food-101N, WebVision, and Clothing1M. Yet the existing efforts suffer from two caveats: firstly, the lack of ground-truth verification makes it hard to theoretically study the property and treatment of real-world label noise. Secondly, these efforts are often of large scales, which may result in unfair comparisons of robust methods within reasonable and accessible computation power. To better understand real-world label noise, it is important to establish controllable and moderate-sized real-world noisy datasets with both ground-truth and noisy labels. This work presents two new benchmark datasets, which we name as CIFAR-10N, CIFAR-100N, equipping the training datasets of CIFAR-10 and CIFAR-100 with human-annotated real-world noisy labels that we collect from Amazon Mechanical Turk. We quantitatively and qualitatively show that real-world noisy labels follow an instance-dependent pattern rather than the classically assumed and adopted ones (e.g., class-dependent label noise). We then initiate an effort to benchmark a subset of the existing solutions using CIFAR-10N and CIFAR-100N. We further proceed to study the memorization of correct and wrong predictions, which further illustrates the difference between human noise and class-dependent synthetic noise. We show indeed the real-world noise patterns impose new and outstanding challenges as compared to synthetic label noise. These observations require us to rethink the treatment of noisy labels, and we hope the availability of these two datasets would facilitate the development and evaluation of future learning with noisy label solutions. The corresponding datasets and the leaderboard are publicly available at http://noisylabels.com. 
    more » « less
  7. Meila, Marina ; Zhang, Tong (Ed.)
    The label noise transition matrix, characterizing the probabilities of a training instance being wrongly annotated, is crucial to designing popular solutions to learning with noisy labels. Existing works heavily rely on finding “anchor points” or their approximates, defined as instances belonging to a particular class almost surely. Nonetheless, finding anchor points remains a non-trivial task, and the estimation accuracy is also often throttled by the number of available anchor points. In this paper, we propose an alternative option to the above task. Our main contribution is the discovery of an efficient estimation procedure based on a clusterability condition. We prove that with clusterable representations of features, using up to third-order consensuses of noisy labels among neighbor representations is sufficient to estimate a unique transition matrix. Compared with methods using anchor points, our approach uses substantially more instances and benefits from a much better sample complexity. We demonstrate the estimation accuracy and advantages of our estimates using both synthetic noisy labels (on CIFAR-10/100) and real human-level noisy labels (on Clothing1M and our self-collected human-annotated CIFAR-10). Our code and human-level noisy CIFAR-10 labels are available at https://github.com/UCSC-REAL/HOC. 
    more » « less
  8. null (Ed.)
    Human-annotated labels are often prone to noise, and the presence of such noise will degrade the performance of the resulting deep neural network (DNN) models. Much of the literature (with several recent exceptions) of learning with noisy labels focuses on the case when the label noise is independent of features. Practically, annotations errors tend to be instance-dependent and often depend on the difficulty levels of recognizing a certain task. Applying existing results from instance-independent settings would require a significant amount of estimation of noise rates. Therefore, providing theoretically rigorous solutions for learning with instance-dependent label noise remains a challenge. In this paper, we propose CORES (COnfidence REgularized Sample Sieve), which progressively sieves out corrupted examples. The implementation of CORES does not require specifying noise rates and yet we are able to provide theoretical guarantees of CORES in filtering out the corrupted examples. This high-quality sample sieve allows us to treat clean examples and the corrupted ones separately in training a DNN solution, and such a separation is shown to be advantageous in the instance-dependent noise setting. We demonstrate the performance of CORES^2 on CIFAR10 and CIFAR100 datasets with synthetic instance-dependent label noise and Clothing1M with real-world human noise. As of independent interests, our sample sieve provides a generic machinery for anatomizing noisy datasets and provides a flexible interface for various robust training techniques to further improve the performance. Code is available at https://github.com/UCSC-REAL/cores. 
    more » « less
  9. null (Ed.)
    In this paper, we study Federated Bandit, a decentralized Multi-Armed Bandit problem with a set of N agents, who can only communicate their local data with neighbors described by a connected graph G. Each agent makes a sequence of decisions on selecting an arm from M candidates, yet they only have access to local and potentially biased feedback/evaluation of the true reward for each action taken. Learning only locally will lead agents to sub-optimal actions while converging to a no-regret strategy requires a collection of distributed data. Motivated by the proposal of federated learning, we aim for a solution with which agents will never share their local observations with a central entity, and will be allowed to only share a private copy of his/her own information with their neighbors. We first propose a decentralized bandit algorithm \textttGossip\_UCB, which is a coupling of variants of both the classical gossiping algorithm and the celebrated Upper Confidence Bound (UCB) bandit algorithm. We show that \textttGossip\_UCB successfully adapts local bandit learning into a global gossiping process for sharing information among connected agents, and achieves guaranteed regret at the order of O(\max\ \textttpoly (N,M) łog T, \textttpoly (N,M)łog_łambda_2^-1 N\ ) for all N agents, where łambda_2\in(0,1) is the second largest eigenvalue of the expected gossip matrix, which is a function of G. We then propose \textttFed\_UCB, a differentially private version of \textttGossip\_UCB, in which the agents preserve ε-differential privacy of their local data while achieving O(\max \\frac\textttpoly (N,M) ε łog^2.5 T, \textttpoly (N,M) (łog_łambda_2^-1 N + łog T) \ ) regret. 
    more » « less
  10. null (Ed.)
    The presence of label noise often misleads the training of deep neural networks. Departing from the recent literature which largely assumes the label noise rate is only determined by the true label class, the errors in human-annotated labels are more likely to be dependent on the difficulty levels of tasks, resulting in settings with instance-dependent label noise. We first provide evidences that the heterogeneous instance-dependent label noise is effectively down-weighting the examples with higher noise rates in a non-uniform way and thus causes imbalances, rendering the strategy of directly applying methods for class-dependent label noise questionable. Built on a recent work peer loss [24], we then propose and study the potentials of a second-order approach that leverages the estimation of several covariance terms defined between the instance-dependent noise rates and the Bayes optimal label. We show that this set of second-order statistics successfully captures the induced imbalances. We further proceed to show that with the help of the estimated second-order statistics, we identify a new loss function whose expected risk of a classifier under instance-dependent label noise is equivalent to a new problem with only class-dependent label noise. This fact allows us to apply existing solutions to handle this better-studied setting. We provide an efficient procedure to estimate these second-order statistics without accessing either ground truth labels or prior knowledge of the noise rates. Experiments on CIFAR10 and CIFAR100 with synthetic instance-dependent label noise and Clothing1M with real-world human label noise verify our approach. Our implementation is available at https://github.com/UCSC-REAL/CAL. 
    more » « less